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We examine the power-efficient capacity of the noiseless optical PPM channel. It is
shown that even though the capacity per photon can be made to increase without bound,
the capacity per channel use (for best power efficiency) is always less than 2 nats per
symbol. Furthermore, it approaches 2 nats per symbol as the bandwidth expansion factor

goes to infinity.

l. Introduction

In Ref. 1 a method was described for maximizing the
energy efficiency of a noiseless PPM optical channel subject to
simultaneous constraints on the throughput capacity and
bandwidth. Specifically, we considered a Q-ary erasure channel
often used to model a Q-ary PPM optical communication
system. This channel is known to have a capacity Cg per
channel use of
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where Ng is the intensity of the optical source as seen by the
receiver during the PPM pulse (measured in photons/second)
and AT is the PPM slot width in seconds. Since there are QAT
seconds required for each channel use and each PPM symbol
contains, on the average, NgAT photons, then one can specify
the channel capacity in terms of
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and

~NAT
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Cpp = N, AT = N,AT InQ nats/photon.  (3)

In Ref. 1 we simultaneously fixed the throughput capacity
Cr and the slot width (or equivalently the system bandwidth)
AT. Then, Cp, was plotted as a function of Q. From such
plots one could determine Q%,the value of Q for which the
capacity/photon, Cp,, was maximized. In Ref. 1 we also
observed that the product C,ATQ* was approximately con-
stant. In this article we will examine this latter topic in more
detail. This will lead to what can effectively be interpreted as a
Shannon limit for the noiseless, power-efficient optical PPM
channel.

ll. Analysis

We must first determine the requirements on the optimizing
value of Q. A necessary condition for Q% can be obtained by
setting the derivative of Cp, with respect to Q equal to zero.




However, before this can be done note that if C and AT are
fixed, any variation of Q must be offset by compensating
changes in Ny (see Eq. 2). Thus, we must explicitly show the
dependence of Ng on 0. From (2) we have that

1 CTATQ)
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Now, substituting (4) into (3) and differentiating we obtain
the necessary condition

T%LZQ()@ [1—$J+In[l~ Z(Q):ngg* =0 (5

where

C,ATQ
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Thus, once we specify the product a = C AT (which is equiva-
lently the capacity per slot), O* can be determined by solving
Eq. (5) numerically.

Table 1 shows the results of such calculations for a wide
range of a’s. Both Q* and C,ATQ* are shown for each a.
Clearly, as o decreases there is a compensating increase in Q%
such that for most values of &, C.ATQ¥ is slightly less than 2.

We will now interpret these results in an even more interest-
ing way. From Eqs. (1) and (2) we recognize that C,ATQ is
simply Cg, the channel capacity in nats/channel use. Thus,
CrATQ* is nothing more than Cg evaluated at the most
energy-efficient operating point. We shall denote this quantity
C%. Additionally, we note that if o decreases, either AT
decreases (bandwidth used increases) for fixed Cp or the
required throughput capacity decreases for fixed bandwidth.
Both statements are equivalent to saying that the ratio of
available bandwidth to information bandwidth is increasing. In
Fig. 1 Cg is plotted as a function of this bandwidth expansion.
In the appendix we prove that C; <2 and approaches 2 in
the limit. Thus, we have established the following fundamental

property:

For the noiseless optical PPM channel, the most
energy-efficient use of the channel results in an
information per channel use rate C§ of less than 2
nats per channel use. Furthermore, C¥ approaches
2 nats per channel use as the bandwidth expansion
Jactor approaches

Ill. Discussion

It is well known that the capacity of the noiseless PPM
channel measured in nats/photon can be made infinite by
allowing the word size (and hence the bandwidth expansion)
to go to infinity. It is therefore surprising that the capacity in
nats/channel use limits out at 2. This is because, as a decreases,
Q* increases, Z* goes to zero and the average energy per pulse
(i.e., per channel use) also goes to zero as seen by Eq.(4).
Thus

C*
cr o=
Pn = NEAT

goes to infinity because NEAT goes to zero.

The formulation of C§ bears a striking resemblance to the
Shannon Limit for the additive white gaussian noise channel.
For the AWGN Shannon showed that the energy required to
transmit reliably one bit of information, £,, normalized by
the one-sided noise power spectral density N, is lower
bounded by

Eb
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and that E, /N0 can be made to approach this bound as the
bandwidth expansion of the signal approaches . For the
noiseless optical PPM Channel, ¥, vanishes (quantum noise
does not) so the energy required per bit can be made arbi-
trarily small. However, the capacity per power efficient use of
the channel is still limited and approaches 2 nats/channel use
as the bandwidth expands. As in the gaussian channel case, the
optical channel limiting behavior is obtained by a sequence of
increasing complexity orthogonal (PPM in this case) modula-
tion schemes.
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Table 1. Optimized values of @ and C;ATQ

@ Q* CprATQ*
100 0 0
10-9-7 7.13 142
10-1 15.7 1.57
10—2 176 1.76
10-3 1.83 x 103 1.83
10-4 1.87 x 104 1.87
10~5 1.89 x 105 1.89
106 1.91 x 108 1.91
1077 192 x 107 1.92
10-8 193 x 108 193
10™° 1.94 x 10° 1.94
10-40 1.94 x 1010 1.94
10-11 1.95 x 1011 1.95
10-12 195 x 1042 1.95
10-14 1.96 x 1014 1.96
10-20 1.97 % 1020 . 197

19-30 1.98 x 1030 1.98
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Fig. 1. Variation of energy-efficient channel capacity/channel use
with bandwidth expansion
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Appendix

We wish to show that C§<2 and asymptotically
approaches 2 as & = 0. From (5) we have that the optimizing
Q for any « satisfies the relation

Z [—-—1—{|+ln(1—Z*) =0

1- 2% InQ*
where
2t = CTATQ* ) C;
InQ* InQ* -~

Using this last equality we can rewrite the optimality condi-
tion as

Cs = £2%)
where

Z2
@ = i-npma-2

From (2) we see that

—NJAT
Z=1-¢ S

so that 0 <Z < 1. (Z=1 corresponds to infinite energy per
pulse whereas Z =0 corresponds to no energy per pulse.) We
now claim that f(Z) < 2 for all Z e (0, 1). To prove this we ask
if

Z2 ?
Z+(1—Z)1n(1—Z)<2 (A-1)

We will prove in a moment that Z+ (1 - Z)In(l - Z)> 0 for
Z € (0, 1). Thus, (A-1) can be rewritten as

1—2—22) ?
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Now, by expanding 1/1 - Z and In (1 - Z) in their correspond-
ing power series representations on the open interval of Z
yields

n

EWEE

Each term on the left dominates the corresponding term on
the right, so the assertion is clearly true whenever

Z+(1-2)In(1-2) > 0.

By the same procedure, this is true if

Z_

iz >-lIn(l-2)
Expanding both sides gives
2 73 4
Z+72+273 +Z4+-~->Z+~Z2— +ZT+ZT+~ o

which is clearly true.

Finally, we note that as the bandwidth expansion factor
increases, o decreases and Z -> Q. This is true whether or not
0* increases (which it does) by virtue of the fact that
CpATQ* is bounded. For this reason we are interested in f(0).
By applying L’Hospital’s rule twice to f(Z) we see that f(0)
does indeed equal 2. Thus, C§ is less than 2 and approaches 2
in the limit as o~ 0.




